合肥生活安徽新闻合肥交通合肥房产生活服务合肥教育合肥招聘合肥旅游文化艺术合肥美食合肥地图合肥社保合肥医院企业服务合肥法律

代写CS536、代做C/C++,Java编程
代写CS536、代做C/C++,Java编程

时间:2025-02-20  来源:合肥网hfw.cc  作者:hfw.cc 我要纠错



CS536 Assignment 3
Due: Feb 28th, 2025
Early Bird Due: Feb 26th, 2025
(Ethics: Any behavior on any homework or exam that could be considered copying or cheating will result in an immediate zero on the assignment 
for all parties involved. See the IIT Code of Academic Honesty,)
1. Remember that Σ is the collection of all well-formed states, and Σ⊥ = Σ ∪ {⊥}. Decide true or false for each of 
the following statements, justify your answers briefly.
a. If 𝜎(𝑝) =⊥, then ⊭ ¬𝑝. 
b. Let 𝜏 ∈ Σ⊥, then 𝜏 ⊨ 𝑝 or 𝜏 ⊨ ¬𝑝.
c. Let Σ0 ⊆ Σ and Σ0 ⊨ 𝑝, also let 𝜏 ⊨ 𝑝; then Σ0 ∪ {𝜏} ⊨ 𝑝.
d. ∅ ⊨ 𝑝 and ∅ ⊨ ¬𝑝 (∅ represents an empty collection of states).
e. Let Σ0 ⊂ Σ, then Σ0 ⊨ 𝑥 > 1 or Σ0 ⊨ 𝑥 ≤ 1.
2. Calculate denotational semantics for the following nondeterministic programs.
a. Let 𝐼𝐹 ≡ 𝐢𝐟 𝑥 > 𝑦 → 𝑥 ≔ 𝑥 − 1 ◻ 𝑥 > 𝑦 → 𝑦 ≔ 𝑦 + 1 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔ 𝑦/𝑥 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔
𝑥/𝑦 𝐟𝐢, and let 𝜎1 = {𝑥 = 3, 𝑦 = 1}. Calculate 𝑀(𝐼𝐹, 𝜎1) and show your work.
b. Let 𝐼𝐹 ≡ 𝐢𝐟 𝑥 > 𝑦 → 𝑥 ≔ 𝑥 − 1 ◻ 𝑥 > 𝑦 → 𝑦 ≔ 𝑦 + 1 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔ 𝑦/𝑥 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔
𝑥/𝑦 𝐟𝐢, and let 𝜎2
(𝑥) = 𝜎2
(𝑦) = 1. Calculate 𝑀(𝐼𝐹, 𝜎2) and show your work.
c. Let 𝐷𝑂 ≡ 𝐝𝐨 𝑥 > 𝑦 → 𝑥 ≔ 𝑥 − 1 ◻ 𝑥 > 𝑦 → 𝑦 ≔ 𝑦 + 1 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔ 𝑦/𝑥 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔
𝑥/𝑦 𝐨𝐝, and let 𝜎1 = {𝑥 = 3, 𝑦 = 1}. Calculate 𝑀(𝐷𝑂, 𝜎1) and show your work.
d. Let 𝐷𝑂 ≡ 𝐝𝐨 𝑥 > 𝑦 → 𝑥 ≔ 𝑥 − 1 ◻ 𝑥 > 𝑦 → 𝑦 ≔ 𝑦 + 1 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔ 𝑦/𝑥 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔
𝑥/𝑦 𝐨𝐝, and let 𝜎2
(𝑥) = 𝜎2
(𝑦) = 1. Calculate 𝑀(𝐷𝑂, 𝜎2) and show your work.
3. Let 𝑏 be an array of size 𝑛 ≥ 1, and ∀0 ≤ 𝑖 < 𝑛. 𝑏[𝑖] = 0 ∨ 𝑏[𝑖] = 1. Decide which number (0 𝑜𝑟 1) is the 
majority in 𝑏 without counting their quantities. 
Write a program named 𝑀𝐴𝐽𝑂𝑅𝐼𝑇𝑌 in our language that can solve the above problem and bind the majority 
among 0 and 1 to variable 𝑚𝑎𝑗𝑜𝑟. You can assume that 𝑏 is written in the memory state; and to simplify the 
question, we artificially define 𝑏[𝑛] = 100, so you don’t need to worry about a possible runtime error when the 
array index reaches 𝑛. Your program doesn’t have to be deterministic. Be careful of the grammar in our 
programming language. 
Here are some hints: 
1) We can use the following linear-search-like algorithm: scan the array 𝑏 to pair up each 0 with a 1. Once we 
have some 1′𝑠 left over, then 1 is the majority; once we have some 0′𝑠 left over, then 0 is the majority; if 
we can pair up all numbers, then either of them can be the majority. 
2) A student named Jason wrote a partial solution that could be useful to solve the above problem:
𝐽 ≡ 𝐝𝐨 𝑏[𝑘0
] = 1 → 𝑘0 ≔ 𝑘0 +1 ◻ 𝑏[𝑘1
] = 0 → 𝑘1 ≔ 𝑘1 + 1 𝐨𝐝 
Consider 𝑘0 and 𝑘1 as pointers for number 0 and 1 respectively. What program 𝐽 does is to find the next 
𝑘0 and 𝑘1
such that 𝑏[𝑘0
] = 0 and 𝑏[𝑘1
] = 1. You can use 𝐽 inside of your program. 
4. Decide true or false for each of the following statements, justify your answers briefly.
a. If 𝑀(𝑆, 𝜎) contains exactly one state, then 𝑆 is a deterministic statement.
b. If 𝜎 ⊭ {𝑝} 𝑆 {𝑞}, then 𝜎 ⊨ 𝑝.
c. If 𝜎 ⊨𝑡𝑜𝑡 {𝑝} 𝑆 {𝑞}, then 𝜎 ⊭ 𝑝.
d. If 𝜎 ⊨ {𝑝} 𝑆 {𝑞}, then 𝑀(𝑆, 𝜎) ⊨ 𝑞.
e. If 𝜎 ⊭ {𝑝} 𝑆 {𝑞}, then 𝜎 ⊭𝑡𝑜𝑡 {𝑝} 𝑆 {𝑞}.
5. Answer the following questions about possible values of variable 𝑥 in a state. Justify your answer briefly.
a. Let ⊥𝑒∉ 𝑀(𝑆, 𝜎), where 𝑆 ≡ 𝑥 ∶= 𝑠𝑞𝑟𝑡(𝑥) / 𝑏[𝑥] and 𝜎(𝑏) = (3, 0,−2, 4). What are the possible values 
of 𝜎(𝑥)?
b. Let 𝜎 ⊨ {𝑥 ≠ 0} 𝐰𝐡𝐢𝐥𝐞 𝑥 ≠ 0 𝐝𝐨 𝑥 ≔ 𝑥 −2 𝐨𝐝 {𝑥 < 0}, what are the possible values of 𝜎(𝑥)?
c. Let 𝜎 ⊨𝑡𝑜𝑡 {𝑥 ≠ 0} 𝐰𝐡𝐢𝐥𝐞 𝑥 ≠ 0 𝐝𝐨 𝑥 ≔ 𝑥 − 2 𝐨𝐝 {𝑥 < 0}, what are the possible values of 𝜎(𝑥)?
6. Let predicate function 𝑃(𝑘, 𝑠) ≡ 𝑠
2 ≤ 𝑘 ≤ (𝑠 + 1)
2
. For each of the following triples, decide whether it is valid 
under total correctness, justify your answer briefly. 
a. {𝑃(𝑘, 𝑠 +1)} 𝑠 ≔ 𝑠 + 1 {𝑃(𝑘, 𝑠)}
b. {𝑃(𝑘, 𝑠)} 𝑠 ≔ 𝑠 +1 {𝑃(𝑘, 𝑠 + 1)}
c. {𝑃(𝑘, 𝑠) ∧ 𝑠 < 0} 𝑠 ≔ 𝑠 + 1; 𝑘 ≔ 𝑘 + 1 {𝑃(𝑘, 𝑠)}
d. {𝑃(𝑘, 𝑠) ∧ 𝑠 = 𝑥} 𝑠 ≔ 𝑠 + 1 {𝑃(𝑘, 𝑥)}
e. {𝑃(𝑘 +1, 𝑠 + 1)} 𝑠 ≔ 𝑠 + 1; 𝑘 ≔ 𝑘 + 1 {𝑃(𝑘, 𝑠)}
7. Let 𝜎 ⊨ {𝑝1
} 𝑆 {𝑞1
} and 𝜎 ⊨ {𝑝2
} 𝑆 {𝑞2
}. Decide whether 𝜎 necessarily satisfies the following triples under 
partial correctness, justify your answer briefly.
a. {𝑝1 ∧ 𝑝2
} 𝑆 {𝑞1 ∧ 𝑞2
}
b. {𝑝1 ∨ 𝑝2
} 𝑆 {𝑞1 ∨ 𝑞2
}
c. {𝑝1 ∨ 𝑝2
} 𝑆 {𝑞1 ∧ 𝑞2
}
8. Let ⊨𝑡𝑜𝑡 {𝑝1
} 𝑆 {𝑞1
} and ⊨𝑡𝑜𝑡 {𝑝2
} 𝑆 {𝑞2
}. Decide whether the following triples are valid under total
correctness, justify your answer briefly. 
a. {𝑝1 ∧ 𝑝2
} 𝑆 {𝑞1 ∧ 𝑞2
}
b. {𝑝1 ∧ 𝑝2
} 𝑆 {𝑞1 ∨ 𝑞2
}
c. {𝑝2
} 𝑆 {𝑞1 → 𝑞2
}
Hints for questions 7 and 8:
1) Remember that 𝜎 ⊨ 𝑝 ∧ 𝑞 means “𝜎 ⊨ 𝑝 and 𝜎 ⊨ 𝑞”; 𝜎 ⊨ 𝑝 ∨ 𝑞 means “𝜎 ⊨ 𝑝 or 𝜎 ⊨ 𝑞”.
2) To prove 𝜎 ⊨ {𝑝} 𝑆 {𝑞}, you can prove that “if 𝜎 ⊨ 𝑝,then 𝑀(𝑆, 𝜎)−⊥ ⊨ 𝑞”.
3) To prove ⊨𝑡𝑜𝑡 {𝑝} 𝑆 {𝑞}, you can prove that “for any state 𝜎, if 𝜎 ⊨ 𝑝,then 𝑀(𝑆, 𝜎) ⊨ 𝑞”.

请加QQ:99515681  邮箱:99515681@qq.com   WX:codinghelp



 

扫一扫在手机打开当前页
  • 上一篇:菜鸟钱包全国客服电话-菜鸟钱包24小时人工服务热线
  • 下一篇:代写CMSC 150、代做Python设计程序
  • ·代写COMP S311、代做Java编程语言
  • ·代做COMP2012J、java编程语言代写
  • ·ITP4206代做、代写c/c++,Java编程
  • ·CS425FZ代做、代写Java编程设计
  • ·代写COMP3013、代做Java编程设计
  • ·代写COMP 250、代做java编程语言
  • ·代写6570USST、代做c/c++,Java编程
  • ·PROG2004代写、代做Java编程设计
  • ·代写ISIT312 、代做Java编程语言
  • ·代写INFO1113、Java编程设计代做
  • 合肥生活资讯

    合肥图文信息
    「多多评价助手」智能补单助手 | 出评软件自动开团工具
    「多多评价助手」智能补单助手 | 出评软件自
    急寻热仿真分析?代做热仿真服务+热设计优化
    急寻热仿真分析?代做热仿真服务+热设计优化
    出评 开团工具
    出评 开团工具
    挖掘机滤芯提升发动机性能
    挖掘机滤芯提升发动机性能
    戴纳斯帝壁挂炉全国售后服务电话24小时官网400(全国服务热线)
    戴纳斯帝壁挂炉全国售后服务电话24小时官网
    菲斯曼壁挂炉全国统一400售后维修服务电话24小时服务热线
    菲斯曼壁挂炉全国统一400售后维修服务电话2
    美的热水器售后服务技术咨询电话全国24小时客服热线
    美的热水器售后服务技术咨询电话全国24小时
    海信罗马假日洗衣机亮相AWE  复古美学与现代科技完美结合
    海信罗马假日洗衣机亮相AWE 复古美学与现代
  • 短信验证码 酒店vi设计 币安下载 NBA直播

    关于我们 | 打赏支持 | 广告服务 | 联系我们 | 网站地图 | 免责声明 | 帮助中心 | 友情链接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥网 版权所有
    ICP备06013414号-3 公安备 42010502001045