合肥生活安徽新闻合肥交通合肥房产生活服务合肥教育合肥招聘合肥旅游文化艺术合肥美食合肥地图合肥社保合肥医院企业服务合肥法律

代写Big Data in Finance 算法 交易 程序代写 Algorithmic Trading
代写Big Data in Finance 算法 交易 程序代写 Algorithmic Trading

时间:2025-11-03  来源:合肥网hfw.cc  作者:hfw.cc 我要纠错



Big Data in Finance – Assignment 1 
Algorithmic Trading Assignment 
Objective: 
Develop and perform algorithmic trades and their strategies using big data in finance. 
Requirements: 
You are required to do the data analysis in Python. The purpose of this document set 
is to perform Big Data Science and artificial intelligence in financial data mining and 
find out the similarity and differences between your findings and the results of other 
researchers in journal papers. 
Introduction: 
Algorithmic trading has become an increasingly important tool in the financial markets, 
allowing traders to leverage advanced data analysis and decision-making capabilities 
to generate profits. In this assignment, you will be tasked with developing and 
evaluating several algorithmic trading strategies for the Chinese or Hong Kong stock 
market, or the currency exchange market or commodity products in different 
commodity exchanges in the world. 
Procedures: 
1. Financial Instrument Selection and Portfolio Optimization Using Python
1. Stock Selection and Analysis 
Requirements: 
Use yfinance or Alpha Vantage API to fetch historical stock data. 
Select 3–5 stocks based on criteria such as: 
 Volatility 
 Moving average crossover 
 Sector performance 
Sample Starter Code: 
python 
import yfinance as yf 
import matplotlib.pyplot as plt 
tickers = ['AAPL', 'MSFT', 'GOOGL'] 
data = yf.download(tickers, start='2023-01-01', end='2023-12-
31')['Adj Close'] 
# Calculate 50-day and 200-day moving averages 
ma_50 = data.rolling(window=50).mean() 
ma_200 = data.rolling(window=200).mean() 
# Plot 
plt.figure(figsize=(12,6)) 
plt.plot(data['AAPL'], label='AAPL Price') 
plt.plot(ma_50['AAPL'], label='50-day MA') 
plt.plot(ma_200['AAPL'], label='200-day MA') 
plt.legend() 
plt.title('AAPL Stock Analysis') 
plt.show() 
2. Exchange Rate Monitoring 
Requirements: 
 Use forex-python or exchangeratesapi.io to track FX rates. 
 Compare currency pairs (e.g., USD/JPY, EUR/USD) over time. 
Page 1 
 Identify trends or arbitrage opportunities. 
Sample Starter Code: 
python 
from forex_python.converter import CurrencyRates 
import datetime 
cr = CurrencyRates() 
date = datetime.datetime(2023, 12, 1) 
rate = cr.get_rate('USD', 'JPY', date) 
print(f"USD to JPY on {date.date()}: {rate}") 
3. Commodity Price Tracking 
Requirements: 
 Use InvestPy, Quandl, or other sources to fetch commodity prices 
(e.g., gold, oil, wheat). 
 Visualize price trends and compute simple indicators (e.g., RSI, 
MACD). 
Sample Starter Code: 
python 
import investpy 
oil_data = investpy.get_commodity_historical_data( 
 commodity='crude oil', 
 from_date='01/01/2023', 
 to_date='31/12/2023', 
 interval='Daily' 

print(oil_data.head()) 
4. Options, Futures, and Derivatives 
Requirements: 
 Use yfinance or QuantLib to analyze options or futures contracts. 
 Calculate Greeks (Delta, Gamma, Theta) or simulate payoff 
diagrams. 
Sample Starter Code: 
python 
import yfinance as yf 
option_chain = yf.Ticker('AAPL').options 
print("Available Expiry Dates:", option_chain) 
opt_data = yf.Ticker('AAPL').option_chain(option_chain[0]) 
calls = opt_data.calls 
puts = opt_data.puts 
print("Call Options:\n", calls.head())
5. Submit a Python code (.py) with: 
i. Clear code comments 
ii. Visualizations 
iii. Summary of findings 
2. Selection of Investment Portfolio for initial capital $1,000,000: (Textbook 
Page 2 
Ch11)
2.1 Select one business sector in accordance with Global Industry Classification 
Standard in Appendix 1. Each student selects his/her own business sector and 
no business sector should be repeated. Design with explanation at least 3 
investment portfolios in the selected business sector including all together 10 items 
of the following and 1 corresponding indictor for benchmarking: 
1. relevant industrial stocks in China (ie. Shanghai, Shenzhen or Hong 
Kong Stock Markets), for example, 
45101010 Internet Software & Services (8-digit number only)
i. 9988.HK - Alibaba Group Holding Ltd. 
ii. 0700.HK - Tencent Holdings Ltd. 
iii. BIDU - Baidu, Inc. 
iv. 9618.HK - JD.com, Inc. 
v. PDD - PDD Holdings Inc 拼多多
vi. 600941.SS - China Moible Ltd 中國移動
vii. … 
2. country or crypto currencies for investment portfolio, 
i. USD/CNY 
ii. EUR/CNY 
iii. JPY/CNY 
iv. GBP/CNY 
v. AUD/CNY 
vi. USD/BTC (Bitcoin) 
3. commodity products in different commodity exchanges in the world, 
i. Gold (XAUUSD) 
ii. Silver (XAGUSD) 
iii. Crude Oil (USOIL) 
iv. Copper (XCUUSD) 
v. Wheat (WHEATUSD) 
4. or their options, futures and derivatives 
2.2 Benchmark the Investment Portfolios to relevant indices, for examples 
Stock Indices in China 
 Hang Seng Index 
 Shanghai Composite Index 
 SZSE Component Index 
 CSI 300 Index 
 SSE 50 Index 
 SSE 180 Index 
 SZSE 100 Index 
 SZSE 200 Index 
1.3 More than 3 investment portfolios would be counted in the bonus marks. 
3. Trading Strategies 
1. Design with explanation the trading strategies as follows: 
1. Single Indicator-Based Strategy (refer to the indicators in yahoo finance 
advanced chart) 
Develop a trading strategy that relies on a single technical indicator, such as the 
Shanghai Composite Index's 50-day moving average, the Hang Seng Index's 
Relative Strength Index (RSI), or the USD/CNY exchange rate's Stochastic 
Oscillator. Explain the rationale behind your chosen indicator and how it can be 
used to generate buy and sell signals. 
Page 3 
2. Multiple Indicator-Based Strategy 
Create a trading strategy that combines multiple technical indicators to make 
trading decisions. For example, you could use the 20-day and 50-day moving 
averages of the Shenzhen Component Index, along with the MACD indicator, 
to generate trading signals. Discuss how you selected the indicators and how 
you integrated them into a cohesive decision-making framework. 
3. Simple Neural Network AI Strategy (Textbook Ch7, Neural Network 
with Radical Basic Function.txt)
Implement a simple neural network-based trading strategy using stock data from 
the Shanghai Stock Exchange or the Hong Kong Stock Exchange, or currency 
exchange rates. Describe the architecture of your neural network, the input 
features used (e.g., price, volume, technical indicators), and the training process. 
Explain how the neural network generates trading signals. 
4. Hybrid Indicator-Based and Neural Network AI Strategy (2.2 + 2.3)
Develop a hybrid trading strategy that combines traditional technical indicators 
(such as the 200-day moving average of the CSI 300 Index) with a neural 
network-based model. Discuss the rationale for this approach and how the two 
components are integrated to make trading decisions. 
5. Simple Deep Learning AI Strategy (Textbook Ch15)
Design a deep learning-based trading strategy, such as using a recurrent neural 
network (RNN) or a convolutional neural network (CNN) to analyze the 
historical price and volume data of Chinese or Hong Kong stocks, or currency 
exchange rates. Describe the model architecture, the input data, and the training 
process. Explain how the deep learning model is used to generate trading signals. 
6. Hybrid Indicator-Based and Deep Learning AI Strategy (2.2+2.5)
Implement a hybrid trading strategy that integrates traditional technical 
indicators (e.g., the Bollinger Bands of the Hang Seng Index) with a deep 
learning-based model. Explain the benefits of this approach and how the two 
components work together to make trading decisions. 
7. Customized Strategies 
Customize at least one trading strategy to find out the optimal trading strategy 
in your investment combinations. More than one trading strategy would be 
counted in the bonus marks.
4. Backtesting (20241018 backtest using qstock3.py)
For each of the trading strategies developed, perform a comprehensive 
backtesting process using at least two-years historical data from the Chinese or 
Hong Kong stock market, the currency exchange market or different commodity 
exchanges. This should include: 
1. Data Preparation: Obtain and preprocess the necessary historical 
market data for your trading strategies. 
2. Backtesting Methodology: Describe the backtesting methodology you 
will use, including the time period, the evaluation metrics (e.g., returns, 
drawdown, Sharpe ratio), and any assumptions or constraints. 
3. Backtesting Analytical Results: Present the backtesting results for each 
trading strategy, including performance metrics, visualizations (e.g., 
equity curves), and a comparative analysis of the strategies. For example, 
1. Total return ratio (eg. 1100000 / 1000000 = 1.1) 
2. Sharpe ratio 
3. Drawdown 
4. Win/loss ratio 
Page 4 
4. Optimization and Sensitivity Analysis (Optional): Discuss any 
optimization techniques you used to improve the performance of your 
trading strategies, and conduct a sensitivity analysis to understand the 
impact of key parameters on the strategy's performance. 
5. Real-Time Live Simulation 
To further evaluate the effectiveness of your trading strategies, implement a 
real-time live simulation using current market data from the Chinese or Hong 
Kong stock market, or the currency exchange market in consecutive 5 trading 
days. This should involve: 
1. Data Feeds (Yahoo Finance): Integrate real-time market data feeds into 
your trading system. 
2. Order Execution: Develop a mechanism to execute trades based on the 
signals generated by your trading strategies. 
3. Performance Monitoring and its Analysis: Continuously monitor the 
performance of your trading strategies in the live market, tracking key 
metrics and risk-adjusted performance. For example, 
1. Total return 
2. Sharpe ratio 
3. Drawdown 
4. Win/loss ratio 
4. Adaptation and Refinement: Discuss how you would adapt and refine 
your trading strategies based on the insights gained from the real-time 
live simulation. 
* Students need to suggest their own business sector. No business sector should be 
repeated.
Suggested Sections in the Report: 
1. Abstract
2. Introduction and Background
3. Objectives 
4. Literature Review (Optional) 
5. Investment Portfolio 
6. Trading Strategies *** 
7. Backtesting and its analysis *** 
8. Real-Time Live Simulation and its analysis *** 
9. Comparison between Backtesting and the results of Real-Time Live Simulation
10. Discussion (Applications and Implications of Relationship found) 
11. Limitations (Any issue related to the Big Data Science / Artificial Intelligence in 
this study)
12. Conclusions 
13. Recommendations 
14. References (the supporting journal and /or conference papers for your findings with 
references (pdf files))
15. Appendices **** 
*** This section “Research Design and Methodology” should include the Big Data 
Science / Technical Analysis / Artificial Intelligence methods and Python should be 
used for programming. 
**** Python code should be attached in the appendices. 
Bonus: 
Page 5 
Bonus marks can be obtained as follows: 
1. Except the requirements in Selection of Investment Portfolio (Section 2) in 
p.3, one additional Investment Portfolio used. (5 marks each max 5 marks) 
2. Except the requirements in trading strategy, one additional Artificial 
Intelligence, Technical Analysis (TA), Econometrics, Portfolio Analysis, Risk 
Analysis or another quantitative analysis method used not mentioned in this 
subject with submission of python code, data and analysis results. However, 
the bonus method cannot be the same as in other assignments of Big Data in 
Finance. (5 marks each) 
All bonus marks are justified in acceptance of above offers in accordance with the 
quality of references and data. Maximum bonus marks = 20. 
Requirements: 
Students are required to present their topic (at least 10 mins per student) and to write 
an article in English for English classes / Chinese for Chinese classes. 
Submission: 
Submit all files online with the following: (I:\Terence\ Big Data in Finance\...): 
1. An article (at least 10 pages per 1 student, font 12, single line spacing – count 
text, figures, tables only) – English for English classes or English in both 
a. Word and 
b. md (Obsidian) formats (using Word to md) 
i. https://www.wordize.com/word-to-markdown/ or 
ii. https://www.zamzar.com/convert/doc-to-md/ (Max 1 MB) or 
iii. https://word2md.com/
iv. https://products.aspose.app/words/conversion/word-to-md 
v. https://www.vertopal.com/en/convert/doc-to-md, copy the 
output to notepad and save as md 
2. A presentation file with speaking note and audio (please add the notes below 
the powerpoint slides) (at least 5 mins per student) – English powerpoint 2019 
or later (https://support.microsoft.com/en-us/office/record-a-slide-show-with narration-and-slide-timings-0b9502c6-5f6c-40ae-b1e7-e47d8741161c) 
3. Python code in Python Format (py files) 
a. 1 master py file for 1. Financial Instrument Selection and Portfolio 
Optimization (Section 1 in p.1-2) 
b. 1 master py file with all trading strategies, 3 py for 3 investment 
portfolios (Section 2-3, 5 in p.3-4, 5) 
c. 1 Backtest py file for 1 portfolio backtest, 3 Backtest py files for 3 
portfolios backtests, (Section 2-3 in p.4-5) 
4. Data Files in Excel / CSV Format (xlsx/CSV) with web address of data source 
5. AI prompt for Python code generation (txt file) 
6. Neural Network and Deep Learning Model Files 
7. Analysis Result Files in Excel Format (xlsx) 
8. All References (full text journal paper in pdf files) 
9. Fill Online Questionnaire - https://wj.qq.com/s2/16787940/2748/ 
References: 
1. https://www.youtube.com/watch?v=MikiBcP5uQQ&t=3s
2. Web of Science https://www.webofscience.com/wos/woscc/basic-search 
3. Scopus https://www.scopus.com/ 
4. VOSviwer and Scopus https://www.youtube.com/watch?v=QcB9GTHEieY 
Page 6 
5. VOSviewer https://www.vosviewer.com/ 
6. Maxqda https://www.maxqda.com/
7. http://scholar.google.com/ 
8. http://ec.europa.eu/information_society/activities/egovernment_research/focus
/index_en.htm (eGovernment R&D focus) 
9. http://library.ipm.edu.mo/Webpac/eresourcestore.asp?id=100 (ScienceDirect) 
10. Other Journals and websites 
Date of Submission: 
Final Submission: 3 November for Monday Class & 4 November for Tuesday
Presentation started at the end of this subject (if necessary) 
Group: 
1 student in 1 group 
 
Page 7 
Appendix 1: Global Industry Classification Standard 
10 Energy 
1010 Energy 
101010 Energy Equipment & Services 
 10101010 Oil & Gas Drilling 
 10101020 Oil & Gas Equipment & Services 
101020 Oil, Gas & Consumable Fuels 
 10102010 Integrated Oil & Gas 
 10102020 Oil & Gas Exploration & Production 
 10102030 Oil & Gas Refining & Marketing 
 10102040 Oil & Gas Storage & Transportation 
 10102050 Coal & Consumable Fuel 
15 Materials 
1510 Materials 
151010 Chemicals 
 15101010 Commodity Chemicals 
 15101020 Diversified Chemicals 
 15101030 Fertilizers & Agricultural Chemicals 
 15101040 Industrial Gases 
 15101050 Specialty Chemicals 
151020 Construction Materials 
 15102010 Construction Materials 
151030 Containers & Packaging 
 15103010 Metal & Glass Containers 
 15103020 Paper Packaging 
151040 Metals & Mining 
 15104010 Aluminum 
 15104020 Diversified Metals & Mining 
 15104025 Copper 
 15104030 Gold 
 15104040 Precious Metals & Minerals 
 15104045 Silver 
 15104050 Steel 
151050 Paper & Forest Products 
 15105010 Forest Products 
 15105020 Paper Products 
 
Page 8 
20 Industrials 
2010 Capital Goods 
201010 Aerospace & Defense 
 20101010 Aerospace & Defense 
201020 Building Products 
 20102010 Building Products 
201030 Construction & Engineering 
 20103010 Construction & Engineering 
201040 Electrical Equipment 
 20104010 Electrical Components & Equipment 
 20104020 Heavy Electrical Equipment 
201050 Industrial Conglomerates 
 20105010 Industrial Conglomerates 
201060 Machinery 
 20106010 Construction Machinery & Heavy Trucks 
 20106015 Agricultural & Farm Machinery 
 20106020 Industrial Machinery 
201070 Trading Companies & Distributors 
 20107010 Trading Companies & Distributors 
2020 Commercial & Professional Services 
202010 Commercial Services & Supplies 
 20201010 Commercial Printing 
 20201050 Environmental & Facilities Services 
 20201060 Office Services & Supplies 
 20201070 Diversified Support Services 
 20201080 Security & Alarm Services 
202020 Professional Services 
 20202010 Human Resource & Employment Services 
 20202020 Research & Consulting Services 
2030 Transportation 
203010 Air Freight & Logistics 
 20301010 Air Freight & Logistics 
203020 Airlines 
 20302010 Airlines 
203030 Marine 
 20303010 Marine 
203040 Road & Rail 
 20304010 Railroads 
 20304020 Trucking 
203050 Transportation Infrastructure 
 20305010 Airport Services 
 20305020 Highways & Railtracks 
 20305030 Marine Ports & Services 
25 Consumer Discretionary 
2510 Automobiles & Components 
Page 9 
251010 Auto Components 
 25101010 Auto Parts & Equipment 
 25101020 Tires & Rubber 
251020 Automobiles 
 25102010 Automobile Manufacturers 
 25102020 Motorcycle Manufacturers 
2520 Consumer Durables & Apparel 
252010 Household Durables 
 25201010 Consumer Electronics 
 25201020 Home Furnishings 
 25201030 Homebuilding 
 25201040 Household Appliances 
 25201050 Housewares & Specialties 
252020 Leisure Products 
 25202010 Leisure Products 
252030 Textiles, Apparel & Luxury Goods 
 25203010 Apparel, Accessories & Luxury Goods 
 25203020 Footwear 
 25203030 Textiles 
2530 Consumer Services 
253010 Hotels, Restaurants & Leisure 
 25301010 Casinos & Gaming 
 25301020 Hotels, Resorts & Cruise Lines 
 25301030 Leisure Facilities 
 25301040 Restaurants 
253020 Diversified Consumer Services 
 25302010 Education Services 
 25302020 Specialized Consumer Services 
2540 Media 
254010 Media 
 25401010 Advertising 
 25401020 Broadcasting 
 25401025 Cable & Satellite 
 25401030 Movies & Entertainment 
 25401040 Publishing 
 
Page 10 
25 Consumer Discretionary (continued) 
2550 Retailing 
255010 Distributors 
 25501010 Distributors 
255020 Internet & Direct Marketing Retail 
 25502020 Internet & Direct Marketing Retail 
255030 Multiline Retail 
 25503010 Department Stores 
 25503020 General Merchandise Stores 
255040 Specialty Retail 
 25504010 Apparel Retail 
 25504020 Computer & Electronics Retail 
 25504030 Home Improvement Retail 
 25504040 Specialty Stores 
 25504050 Automotive Retail 
 25504060 Home furnishing Retail 
30 Consumer Staples 
3010 Food & Staples Retailing 
301010 Food & Staples Retailing 
 30101010 Drug Retail 
 30101020 Food Distributors 
 30101030 Food Retail 
 30101040 Hypermarkets & Super Centers 
3020 Food, Beverage & Tobacco 
302010 Beverages 
 30201010 Brewers 
 30201020 Distillers & Vintners 
 30201030 Soft Drinks 
302020 Food Products 
 30202010 Agricultural Products 
 30202030 Packaged Foods & Meats 
302030 Tobacco 
 30203010 Tobacco 
3030 Household & Personal Products 
303010 Household Products 
 30301010 Household Products 
303020 Personal Products 
 30302010 Personal Products 
 
Page 11 
35 Health Care 
3510 Health Care Equipment & Services 
351010 Health Care Equipment & Supplies 
 35101010 Health Care Equipment 
 35101020 Health Care Supplies 
351020 Health Care Providers & Services 
 35102010 Health Care Distributors 
 35102015 Health Care Services 
 35102020 Health Care Facilities 
 35102030 Managed Health Care 
351030 Health Care Technology 
 35103010 Health Care Technology 
3520 Pharmaceuticals, Biotechnology & Life Sciences 
352010 Biotechnology 
 35201010 Biotechnology 
352020 Pharmaceuticals 
 35202010 Pharmaceuticals 
352030 Life Sciences Tools & Services 
 35203010 Life Sciences Tools & Services 
40 Financials 
4010 Banks 
401010 Banks 
 40101010 Diversified Banks 
 40101015 Regional Banks 
401020 Thrifts & Mortgage Finance 
 40102010 Thrift & Mortgage Finance 
4020 Diversified Financials 
402010 Diversified Financial Services 
 40201020 Other Diversified Financial Services 
 40201030 Multi-Sector Holdings 
 40201040 Specialized Finance 
402020 Consumer Finance 
 40202010 Consumer Finance 
402030 Capital Markets 
 40203010 Asset Management & Custody Banks 
 40203020 Investment Banking & Brokerage 
 40203030 Diversified Capital Markets 
 40203040 Financial Exchanges & Data 
402040 Mortgage Real Estate Investment Trusts (REITs) 
 40204010 Mortgage REITs 
 
Page 12 
4030 Insurance 
403010 Insurance 
 40301010 Insurance Brokers 
 40301020 Life & Health Insurance 
 40301030 Multi-line Insurance 
 40301040 Property & Casualty Insurance 
 40301050 Reinsurance 
45 Information Technology 
4510 Software & Services 
451010 Internet Software & Services 
 45101010 Internet Software & Services 
451020 IT Services 
 45102010 IT Consulting & Other Services 
 45102020 Data Processing & Outsourced Services 
451030 Software 
 45103010 Application Software 
 45103020 Systems Software 
 45103030 Home Entertainment Software 
4520 Technology Hardware & Equipment 
452010 Communications Equipment 
 45201020 Communications Equipment 
452020 Technology Hardware, Storage & Peripherals 
 45202030 Technology Hardware, Storage & Peripherals 
 452030 Electronic Equipment, Instruments & Components 
 45203010 Electronic Equipment & Instruments 
 45203015 Electronic Components 
 45203020 Electronic Manufacturing Services 
 45203030 Technology Distributors 
4530 Semiconductors & Semiconductor Equipment 
453010 Semiconductors & Semiconductor Equipment 
 45301010 Semiconductor Equipment 
 45301020 Semiconductors 
50 Telecommunication Services 
5010 Telecommunication Services 
501010 Diversified Telecommunication Services 
 50101010 Alternative Carriers 
 50101020 Integrated Telecommunication Services 
501020 Wireless Telecommunication Services 
 50102010 Wireless Telecommunication Services 
 
Page 13 
5 Utilities 
5510 Utilities 
551010 Electric Utilities 
 55101010 Electric Utilities 
551020 Gas Utilities 
 55102010 Gas Utilities 
551030 Multi-Utilities 
 55103010 Multi-Utilities 
551040 Water Utilities 
 55104010 Water Utilities 
551050 Independent Power and Renewable Electricity Producers 
 55105010 Independent Power Producers & Energy Traders 
 55105020 Renewable Electricity 
60 Real Estate 
6010 Real Estate 
601010 Equity Real Estate Investment Trusts (REITs) 
 60101010 Diversified REITs 
 60101020 Industrial REITs 
 60101030 Hotel & Resort REITs 
 60101040 Office REITs 
 60101050 Health Care REITs 
 60101060 Residential REITs 
 60101070 Retail REITs 
 60101080 Specialized REITs 
601020 Real Estate Management & Development 
 60102010 Diversified Real Estate Activities 
 60102020 Real Estate Operating Companies 
 60102030 Real Estate Development 
 60102040 Real Estate Services 
请加QQ:99515681  邮箱:99515681@qq.com   WX:codinghelp

扫一扫在手机打开当前页
  • 上一篇:代写RBE104TC C Programming Language程序 代写C语言
  • 下一篇:返回列表
  • 无相关信息
    合肥生活资讯

    合肥图文信息
    2025年10月份更新拼多多改销助手小象助手多多出评软件
    2025年10月份更新拼多多改销助手小象助手多
    有限元分析 CAE仿真分析服务-企业/产品研发/客户要求/设计优化
    有限元分析 CAE仿真分析服务-企业/产品研发
    急寻热仿真分析?代做热仿真服务+热设计优化
    急寻热仿真分析?代做热仿真服务+热设计优化
    出评 开团工具
    出评 开团工具
    挖掘机滤芯提升发动机性能
    挖掘机滤芯提升发动机性能
    海信罗马假日洗衣机亮相AWE  复古美学与现代科技完美结合
    海信罗马假日洗衣机亮相AWE 复古美学与现代
    合肥机场巴士4号线
    合肥机场巴士4号线
    合肥机场巴士3号线
    合肥机场巴士3号线
  • 短信验证码 雷神诗词网 币安下载 trae 豆包网页版入口 目录网

    关于我们 | 打赏支持 | 广告服务 | 联系我们 | 网站地图 | 免责声明 | 帮助中心 | 友情链接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥网 版权所有
    ICP备06013414号-3 公安备 42010502001045